Exam Symmetry in Physics

Date	May 8, 2014
Room	A. Jacobshal 01
Time	18:30-21:30
Lecturer	D. Boer

- Write your name and student number on every separate sheet of paper
- You are not allowed to use the lecture notes, nor other notes or books
- All subquestions (a, b, etc) of the 3 exercises (18 in total) have equal weight
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Exercise 1

Consider a pyramid with a regular square as base and its apex above the center of the square (see figure). Its symmetry group is $C_{4 v}$.

(a) Identify all transformations that leave this pyramid invariant.
(b) Show that $C_{4 v}$ is isomorphic to D_{4}, for instance using cycle notation.
(c) Argue, using geometrical arguments, that $C_{4 v}$ has five conjugacy classes.
(d) Construct the character table of $C_{4 v}$.
(e) Construct explicitly the three-dimensional vector representation D^{V} for the two transformations that generate $C_{4 v}$.
(f) Decompose D^{V} of $C_{4 v}$ into irreps and use this to conclude whether this group allows in principle for an invariant three-dimensional vector, such as an electric dipole moment.
(g) Determine the Clebsch-Gordan series of the direct product representation $D^{V} \otimes D^{V}$ of $C_{4 v}$ and give the number of independent invariant tensors (if any).

Exercise 2

Consider a classical potential $V(|\vec{r}|)$ experienced by a charged particle at position $\vec{r}=(x, y, z)$ in three dimensions.
(a) Show that the potential V is invariant under $O(3)$ transformations.
(b) What is the defining representation of $O(3)$?
(c) Explain the difference between the vector and axial-vector representations of $O(3)$.
(d) Show that the Kronecker delta $\delta_{i j}$ is invariant under $O(3)$ transformations.
(e) Determine the subgroup of $O(3)$ transformations that leave the tensor $\sigma_{i j}=\delta_{i j}+c \delta_{i 1} \delta_{j 1}$ invariant, for a nonzero constant c.
(f) Explain what is a pseudoscalar and give an example of one.

Exercise 3

(a) Show that the group elements of $O(2)$ have either determinant 1 or -1 .
(b) Show that the elements of $O(2)$ with determinant 1 form a group, whereas the elements with determinant -1 do not.
(c) Show that $S O(2) \cong U(1)$.
(d) Write down a three-dimensional rep of $S O(2)$ and explain whether it is an irrep or not.
(e) Give an example of a physical system with an $S O(2)$ or $U(1)$ symmetry.

